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Q1, (STEP 1, 2010, Q1)
Given that

5:&2-!—‘2_1;2—[i:cy+4:r—4yza{:r—y+2}2+b{c:r+y]2+d,

find the values of the constants a, b, ¢ and d.

Solve the simultaneous equations

522 + 2y —6ry + 4z —4y =9,
622 + 3y” — 8zy + 8r — By = 14.

Q2, (STEP 1, 2011, Q8)

(i) The numbers m and n satisfy

mP=n+n?+1. ()

(a) Show that m > n. Show also that m < n + 1 if and only if 2n* + 3n > 0. Deduce
that n < m < n+ 1 unless —% =n<0.

(b) Hence show that the only solutions of (%) for which both m and n are integers are
(m,n) = (1,0) and (m,n) = (1, —1).

(ii) Find all integer solutions of the equation

PP =g +2¢ 1.

Q3, (STEP 1, 2015, Q7)
Let

f(z) = 3az® — 62°
and, for each real number a, let M(a) be the greatest value of f(x) in the interval —% <r=l.
Determine M(a) for a = 0. [The formula for M(a) is different in different ranges of a: you
will need to identify three ranges.]

Q4, (STEP |, 2018, Q2)

log,_ e
If x = logy ¢, express ¢ in terms of b and x and prove that ] = = logy e.
0g,

(i)  Given that 7% < 10, prove that

1 1

> 2.
logsm = logsm

=I

1

521

. .- m 1
(11) Given that log, ~> — and that e? < 8, prove that Inm > 1
e 5

(iii) Given that e® > 20, 72 < 10 and log,;2 > 5, prove that In7 < 3.




Q5, (STEP 1, 2017, Q2)

1
(i)  The inequality n < 1 holds for ¢ = 1. By integrating both sides of this inequality over
the interval 1 < t < x. show that
Inz<zr—1 (%)

for z = 1. Show similarly that (%) also holds for 0 < = < 1.

1 1
(ii) Starting from the inequality r < n for ¢t = 1, show that
nz>1—2 (*%)
nr=1-—— *%
T

for = = 0.

(iii) Show, by integrating (*) and (#%), that

9 .
2 . Iny gy-l—l
y+1 y—1 2y

for y > 0 and y # 1.

Q6, (STEP |, 2018, Q5)

(1)  Write down the most general polynomial of degree 4 that leaves a remainder of 1 when
divided by anyof x — 1, 2 -2, 2 —3 orx — 4.

(ii) The polynomial P(x) has degree N, where N = 1, and satisfies
P(1)=P(2)=---=P(N) =1.

Show that P(N +1)#1.

Given that P(N + 1) = 2, find P(N + r) where r is a positive integer. Find a positive
integer r, independent of N, such that P(N +r) =N +r.

(iii) The polynomial S(x) has degree 4. It has integer coefficients and the coefficient of a*
is 1. It satisfies

S(a) = S(b) = S(e) = S(d) = 2001,
where a, b, ¢ and d are distinet (not necessarily positive) integers.
(a) Show that there is no integer e such that S(e) = 2018.

(b) Find the number of ways the (distinct) integers a, b, ¢ and d can be chosen such
that S(0) =201Tanda<b<e<d.




Q7, (STEP 1, 2013, Q8)

(i)  The functions a, b, ¢ and d are defined by

(—o0 < x < 00),
nr (x>0),
clz)=2r (—o0 <z < 00),
d(z)=yZ (z>0).

Write down the following composite functions, giving the domain and range of each:

ch, ab. da. ad.

(ii) The functions f and g are defined by

flz)=vzt—1 (|z|] =1),
glx)=va22+1 (—o0<z <o)

Determine the composite functions fg and gf, giving the domain and range of each.

(i11) Sketch the graphs of the functions h and k defined by

hiz)=z+vz? -1 (z21),
k(x) =z —v2Z -1 (|z| = 1),

justifying the main features of the graphs, and giving the equations of any asymptotes.
Determine the domain and range of the composite function kh.

Q8, (STEP 1, 2018, Q7)

(i) In the cubic equation z* — 3pgz + pg(p + q) = 0, where p and g are distinct real
numbers, use the substitution

pz+q
T =
z+1

to show that the equation reduces to az® + b = 0, where a and b are to be expressed
in terms of p and q.

(ii) Show further that the equation #* — 3ex + d = 0, where ¢ and d are non-zero real
numbers, can be written in the form z® — 3pgxr + pg(p + q) = 0, where p and q are
distinet real numbers, provided d? > 4¢° .

(iii) Find the real root of the cubic equation z® + 6z —2 = 0.

(iv) Find the roots of the equation ® — 3p?z + 2p® = 0, and hence show how the equation
2% — 3ex + d = 0 can be solved in the case d = 4¢3 .




